
L

This is sample chapter 4, A Model of Light, from The Graphics
Codex by Morgan McGuire. The full app contains 12 chapters
and 225 encylopedia-like articles. Buy the web or iOS edition for
only $10 at http://graphicscodex.com .

ight propagates along rays, each of which can be
represented by a point and a direction. This chapter
sketches a mathematical representation and

software implementation of a light ray. It then defines the
light field, a mathematical formalization of the light in a
scene in terms of rays. The light field function is defined in
terms of itself by an integral equation. I give an intutitive
explanation of this equation, which is then refined in the
subsequent chapter.

Digital Images are Measurements

A real digital camera is a measurement device. It measures
the amount of light striking each pixel of its sensor and
records it as a number. The resulting digital image is just a
two-dimensional array of the measurements. Given that
digital image, a display can later synthesize light in the same
pattern to reproduce the visual stimulus of the original
scene.

Since images are measurements, rendering is measurement
problem. We want to simulate the amount of light that a
virtual camera measures in a virtual scene. We can then

http://graphicscodex.com/
http://graphicscodex.com/

present that synthetic image as a real visual stimulus to a
human observer.

To produce a rendering algorithm, we require a quantitative
model of “light” under which we can make measurements.
Measurements are taken with respect to a domain and have
ranges in units. For example, in measuring the distance that
you can walk in an hour, the hour is the measurement
domain and the range units are distance units, such as
meters. Our measurements will be virtual, but need to model
their counterparts in the real world so that the result is a
realistic image.

Rays of Light

Light propagates along a ray through a medium. You can
only see light rays that enter your eyes, which means that
you're seeing those rays end-on and they look like points.
The collections of points form the image that you perceive. A
light ray directed somewhere other than your eye sends its
energy to that other location and is never measured by your
eye, so it remains unseen by you.

However, you can see the area around the paths that a large
collection of related light rays take through a dispersive
medium such as fog. This is a nice natural visualization of
light paths and gives some intuitive support for the notion of
a light ray. These crepuscular rays, often informally called
“God rays” when they emerge from clouds, are the shafts of
illuminated medium visible when a relatively bright and
tight bundle of light rays enters it. The “rays” in this case are
figuratively named, since the rays that you actually observe
are the ones coming from the illuminated fog to your eye,
not the ones that pass through the fog to the ground.

Crepuscular Ray [crpsclrDgrm]

A mathematical ray is described by a point and a direction. It
is one half of a line, which extends infinitely in each
direction. The rays in computer graphics begin at some point
of interest, such as a light-emitting or light scattering surface.
The actual light travels along a finite line segment to
another surface, not an infinite ray, but when we're in the
middle of a computation we often won't know where the
terminating end of the segment is. So we consider the ray
formed by the known point of origin and known direction of
propagation, and use the geometry of that ray to later
construct the necessary segment.

Transport Paths
We already have a mathematical representation and software
implementation of 3D points, from the Surface chapter.
Points are described by three real numbers. Points in the
scene (as opposed to abstract mathematical constructs) have
distance units such as meters. I denote points with italic
capital serifed letters, such as and . Their compontents
in some reference are written in equations using the name of
the point as a subscript, e.g., Let
and as fields in code, e.g.,
Point3 P(x, y, z); ... float k = P.x + 2;.

A line segment is described by a starting point and ending

Ba
se

d
on

 a
n

im
ag

e
by

 F
ir0

00
2/

Fl
ag

st
af

fo
to

s
un

de
r t

he
 G

D
FL

 1
.2

 li
ce

ns
e.

P X

P = (x,y,z);k = + 2mxP

javascript:graphicscodex.loadPage('crpsclrDgrm.xml');
http://en.wikipedia.org/wiki/File:Crepuscular_ray_sunset_from_telstra_tower_edit.jpg
http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License_1.2

point; often distinguishing which is the starting point is
useful because that gives the segment orientation, and the
direction of propagation is significant for light traveling
along the segment. For example, there are usually different
amounts of light traveling in opposite directions on the
segment.

A light transport path is a collection of line segments. It can
be described by an ordered set of points, e.g., implemented
as an array of point objects. The transport paths of interest
for rendering originate at a surface that emits photons. This
is interchangably called an emitter (general case), a
luminaire (if a non-natural source, such as a bulb), or a light
source (if relatively small in extent).

We now need a representation for directions in order to
represent the rays along which the segments of the path lie.

Vectors
A geometric vector is the difference of two points. It has a
magnitude and direction. By convention, vectors are written
as italic lower-case serifed letters with an arrow hat, e.g.,

. Because they are differences of points, in 3D a
vector has three components. It carries distance units if the
points were in the scene. A straightforward implementation
is similar to the Point3 class:

Note that the structural type (the stored state) of a vector is
the same as that of a point. However, the semantic type (the
interpretation of the state) is distinct. One cannot add two
points together because they are just positions in space. But
one can add the vector offset between two points to another
point, and can add two offsets together. It is a common
practice to leverage a single implementation class for both
points and vectors. This is convenient for both the class

= B − Av ⃗

1 class Vector3 {
2 public:
3 float x, y, z;
4 ...
5 };

implentor and consumer. However, it muddles the
semantics, which can lead to confusion and errors. I choose
to split the difference in my own code. I use C++ typedefs to
create aliases. In this design, Vector3 and Point3 are distinct
names in source code read by programmers, but actually
have the same implementation and are not distinguished by
the compiler.

Geometric vectors are related to linear algebra vectors and
general computer science vectors. We'll explore the
relationship to linear algebra vectors later. Beware that I
occasionally treat a 3D vector as an array of three values,
e.g., in code; this is in the spirit of that relationship
more than the computer science notation of a vector. In
general, graphics practitioners tend to call call computer
science “vectors” “dynamic arrays” or “buffers” for clarity.

Addition and substraction of vectors proceeds element-wise,
e.g.,

Multiplication or division by a scalar applies to each element
individually:

The Euclidean magnitude or length of a vector is the
Euclidean (i.e., straight-line) distance between two points
separated by that distance, which is given by the
Pythagorean theorem:

The length has the same units as the components of the
vector.

v[2] = zv⃗

(i,j,k) + (x,y,z) = (i + x,j + y,k + z)

k(x,y,z) = (kx,ky,kz)

Let = (x,y,z)v ⃗

||v|| = + +x2 y2 z2
− −−−−−−−−−√

Unit Vectors
A unit vector has length 1 — not 1m, but unitless 1. We can
use unit vectors to express directions without concern for
distance traveled in that direction, which is ideal for
describing the direction of propagation of light. Unit vectors
are conventionally written with caret hats, e.g., .

The operation of creating a unit vector in the direction of an
arbitrary vector is common. To do this, simply divide the
vector by its length:

This process is called normalizing the vector and is often
supported by special instructions in computer graphics
hardware since square root and division tend to be relatively
expensive operations.

Unit vectors in 3D correspond to (abstract, unitless) points
on the unit sphere . I'll declare them in mathematics as

, and use the unit sphere as an integration domain to
integrate an expression over all possible directions, e.g,

.

Normalizing a vector projects it from the origin along its
direction to the corresponding point on the unit sphere. I
denote this operation with the sphere projection operator (in
any dimension),

Geometric Rays

,ω̂ n̂

=ω̂
v ⃗

|| ||v ⃗

S2

∈ω̂ S2

 . . . d∫
S2

ω̂

S() =v ⃗ v ⃗
|| ||v ⃗

Geometric rays have a point and a direction , so a natural
representation for them in a rendering program is a class
containing a point and a (typically unit) vector:

Exercise [ray]: How many bytes does this Ray class
consume in memory?

To reduce the number of distinct variables in the notation,
for the next few chapters I always describe the point and
vector explicitly in both source code and equations.
However, you'll soon want to transition to using a class for
rays in your renderer implementation.

The Surface chapter showed that geometry can be
represented using either an explicit or implicit equation. The
explicit equation for the ray with origin in direction is:

The Light Field

We can now formalize light. It propagates along rays, so
we'll measure the light at a point traveling in a direction. Let
the light field denote the light at propagating in
direction . (The use of capital “L” is historical and doesn't
follow my other naming conventions.) To produce color
images we need to consider multiple frequencies of light, but
for now assume that is a scalar-valued function.

The light field was not invented for computer graphics. It

P ω̂

1 class Ray {
2 public:

 Starting point
3 Point3 origin;

 Unit vector
4 Vector3 direction;

5 };

P

ω̂

P ω̂

X(t ∈) ∈ m = P + tR+ Rn ω̂

L(P,)ω̂ P

ω̂

L

has a long history in astronomy, art, and optics. The term
``light field'' was coined by Moon and Timoshenko's
translation [Gershun1936Lightfield] of Gershun's earlier work. The
light field is also known as the plenoptic function
[Adelson1991Plenoptic p4] and is closely related to the 4D light field
[Levoy1996Lightfield] a.k.a. light slab [Levoy1996Gightfield] a.k.a.
Lumigraph [Gortler1996Lumigraph] . The general notion of a field
of light was first formally presented by Faraday [Faraday1846]

[FaradayBritannica] and appears in Da Vinci's journals from the
15ᵗʰ century.

Light is Conserved Along a Ray
Let us set aside the issue of absorption in a medium and
consider only vacuum or media like air in which absorption
is negligible for small scenes. I'll call these media “empty
space”. Because light propagates along rays, the amount of
light must be conserved along a ray through empty space —
there is no way for other light on different rays to get onto
this one, and no way for light to leave it in empty space.
That means that for two points and in empty space and
with no surfaces between them, the light leaving in the
direction of must all actually reach . This is critical for
efficient rendering: it means that we need only consider
what happens at the points where a light path changes
direction and need not simulate the (infinitely-many more)
points along the path through space.

X P

X

P P

javascript:scrollPageToId('label_Gershun1936Lightfield');
javascript:scrollPageToId('label_Adelson1991Plenoptic');
javascript:scrollPageToId('label_Levoy1996Lightfield');
javascript:scrollPageToId('label_Levoy1996Gightfield');
javascript:scrollPageToId('label_Gortler1996Lumigraph');
javascript:scrollPageToId('label_Faraday1846');
javascript:scrollPageToId('label_FaradayBritannica');

Scattering events at points and along a light path from the emitter to .

We can express the conservation of light along a ray formally
as:

Constant denotes a vanishingly small distance. It appears
in the equation so that we can ignore what happens exactly
at points and and instead consider only the light
transported through the space between them. What happens
exactly at a surface is complicated and ambiguous. For
example, is a point on a surface. If the surface is opaque to
visible light, then for any direction because no
light can flow through the surface. In contrast, point
is in the “empty” space immediately above the surface and
presents none of these problems.

Althought and negated vectors make our parameterization
clear and correct, they are also cumbersome notations that
obscure the equality relationship. Some new notation can
make our statements about light more terse and reveal the
important symmetry. Let:

i.e., the light outgoing from point in direction . Let

i.e., the light incoming to point that propagates in
direction .

Since we'll want to consider light transported not just along
one segment but also along a entire paths, we'll require a
compact way of refering to distinguish several directions.
For this, I place subscripts on that denote the “in” and

Y X P

where

L(P − ϵ ,−) = L(X + ϵ ,)ω̂ ω̂ ω̂ ω̂

= S(P − X)ω̂

ϵ

X P

X

L(X,) = 0ω̂

X + ϵω̂

ϵ

(X,) = L(X + ϵ ,)Lo ω̂ ω̂ ω̂

X ω̂

(X,) = L(X − ϵ ,−)Li ω̂ ω̂ ω̂

X

−ω̂

ω̂

“out” direction and the point on the path. For example, let
 be the direction from which (i.e., the negative

direction of propagation) light arrived at along the path,
and be the direction in which the light left . When
only one set of directions is considered in an equation, I'll
drop the point subscript (it is almost always in that case).
Now, we can express the conservation equation as:

If is a point on the camera, then solving for the light into
the camera is indeed exactly what we want to do in order to
render an image. So, the ray conservation equation is now
the beginning of an equation for rendering an image.

Now consider the right side of the equation, which describes
the quantity that we need to compute. The light leaving is
some fraction the light that entered from and scattered
there, plus any new light that was emitted at if the surface
was glowing.

That is,

 is the sum of light emitted at in direction
and light scattered at in direction . Let be the
subset of the light that is emitted; it will end up being trivial
in the implementation of a renderer.

Of course, light doesn't reach just from . There are
plenty of other paths that have as their final segment. So
to consider the light that reaches after scattering at , we

=ω̂i,X ω̂

X

ω̂o,X X

X

(P,) = (X,)Li ω̂i,P Lo ω̂o,X

P

X

X Y

X

(X,)Li ω̂o,X X ω̂o,X

X ω̂o,X Le

X Y

XP

P X

have to consider all possible points from which light might
reach initially:

In this equation, the empty box () abstracts how
much light scatters at , and some measurement details
about the integration. The domain of integration is “every
point visible from ”. We'll formalize both of these
shortly and fill in the box.

To clean up the measurement details we need to attach units
to what we're measuring. I've carefully and ambiguously
refered to “light” so far and set aside units. In the next
chapter, I'll explain what the light that we're measuring is so
that we can complete the equation.

Symbols

Symbol Type Description Ref

Radiance through in
direction .

[L]

Radiance transported
through in direction

.

[Li]

Radiance transported
through in direction

.

[Lo]

Power (flux) propagating
through points in in
directions in .

[power]

Normalize by
projecting it onto .

[nrmlz]

A point in the scene at which
photons may interact with

[sctvar]

X

where

(X,) = (X,) + ∫ (X,). . .□. . .dYLo ω̂o,X Le ω̂o,X Li ω̂i,X

= −ω̂i,X ω̂o,Y

. . .□. . .
X

Y X

L(X,)ω̂ W/(sr)m2 X

ω̂

(X,)Li ω̂i W/(sr)m2

X + ϵω̂i

−ω̂i

(X,)Lo ω̂o W/(sr)m2

X + ϵω̂o

ω̂o

Φ(A,Γ) W
A

Γ

S()v ⃗ Sn ∈v ⃗ Rn

Sn

X R3m

matter.
Unit normal to the surface
point .

[sctvar]

Unit incident light direction
(opposite the direction of
photon propagation, pointing
back at where the light came
from).

[sctvar]

Unit exiting light direction
(in the direction of photon
propagation, pointing
forward to where the light is
going).

[sctvar]

A point on the image plane /
the origin of a primary ray.

References

[Adelson1991Plenoptic]
The Plenoptic Function and the Elements of Early
Vision
Edward H. Adelson and James R. Bergen
in Computational Models of Visual Processing, p. 3-20, MIT
Press, 1991.

[Gershun1936Lightfield]
The Light Field
A. Gershun
Journal of Mathematics and Physics 18, p. 51-151, translated
by P. Moon and G. Timoshenko (originally published in
Moscow, 1936), MIT, 1939.

[Gortler1996Lumigraph]
The Lumigraph
Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski,
and Michael F. Cohen
in Proceedings of the 23rd annual conference on Computer

n̂ S2

X

ω̂i S2

ω̂o S2

P R3m

graphics and interactive techniques, p. 43-54, ACM Press,
 1996.
http://doi.acm.org/10.1145/237170.237200

[Levoy1996Lightfield]
Light Field Rendering
Marc Levoy and Pat Hanrahan
in Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, p. 31-42, ACM Press,
 1996.
http://doi.acm.org/10.1145/237170.237199

http://doi.acm.org/10.1145/237170.237200
http://doi.acm.org/10.1145/237170.237199

